Journal of Organometallic **Chemishy. 87 (1975) 137-143 0 Elsevier Sequoia** *S-A.,* **Lausanne - Printed in The Netherlands**

THE INTERACTION OF ORGANOSILANES WITH TRIPHENYLMETHYL TETRAFLUOROBORATE

JOHN E. BULKOWSKI. ROBERT STACY and CHARLES H. VAN DYKE*

Department of Chemistry. Carnegie-Mellon Uniuersity. Pittsburgh, Pennsylvania 15213 (U.S.A.)

(Received Au@st 13th. 1974)

Summary

Under mild conditions, Ph_3CBF_4 readily fluorinates the Si-H bond(s) of **tialkylsilanes and dialkylsilanes. The use of this reagent in the successful fluor**ination of HSiMe₂CH₂Fe(CO)₂Cp suggests that the reaction can be used to fluorinate silicon compounds that possibly would not survive more vigorous fluorination reactions. A convenient preparation of diorganofluorosilanes that have both hydrogen and fluorine bonded to silicon is described.

Introduction

As part of a study concerning the interaction of organosilanes with various reagents that are capable of hydride abstraction, we have observed that Ph_3CBF_4 readily fluorinates the Si-H bond of organosilanes at room temperature. If this reaction would parallel the mild halogenation of organosilanes by triphenylmethyl(trityl)-chloride, -bromide and -iodide [1], the observed fluorination would be of considerable value from a synthesis point of view in two respects. It would provide a method for fluorinating various silicon compounds that possibly would not survive other more standard fluorination reactions and it would offer a convenient synthesis of various diorganofluorosilanes that have both hydrogen and fluorine bonded to silicon. In this paper, we report the results of utilizing Ph_3CBF_4 as a mild fluorinating reagent in these two respects.

Results and discussion

Our results **indicate that trialkylsilanes undergo quantitative reaction with** solid Ph₃CBF₄ at room temperature to form the corresponding trialkylfluorosilane, BF3, and Ph3CH (eqn. 1). The reactions are particularly suited to **vacuum**

 $R_3SH + Ph_3CBF_4 \rightarrow R_3SiF + Ph_3CH + BF_3$ $R = Me$, Et

line techniques on a preparative scale in that no solvent is required and the very volatile BF_3 (b.p. -101°) and non-volatile Ph_3CH by-products are easily separ**ated from the moderately volatile fluorosilanes.**

The course of the reaction is not surprising in view of an earlier observation by Corey and West that Ph₃SiH could be converted into Ph₃SiBr by its reaction with Ph₃CBBr₄ in dichloromethane (eqn. 2) [1]. These authors also found that in

$$
Ph3CBBr4 + Ph3SiH \rightarrow Ph3SiBr + Ph3CH + BBr3
$$
 (2)

appropriate solvents triphenylmethyl-chloride, -bromide, and -iodide also haiogenate the Si-H bonds of Ph₃SiH, Ph₂SiH₂ (one or both Si-H bonds halogenated), Et₃SiH and HSiCl₃ smoothly at room temperature (eqn. 3). Our fluorination

$$
\frac{1}{2} \text{Si} - \text{H} + \text{Ph}_3 \text{CX} \rightarrow \frac{1}{2} \text{Si} - \text{X} + \text{Ph}_3 \text{CH}
$$
\n
$$
(\text{X} = \text{Cl}, \text{Br}, \text{I})
$$
\n(3)

results are different from the above in that a solvent was not required for the reaction and Ph,CF did not appear to fluorinate organosilanes satisfactorily. Since the solid phase reaction utilizing the easily prepared (or purchased) Ph3CBF4 was so satisfactory from a synthesis point of view, we did not attempt to modify conditions or seek a suitable solvent for the possible fluorination utilizing Ph₃CF.

Although Me3SiH and Et3SiH are easily converted to the corresponding trialhylfluorosilane by this method, a particularly significant feature of the reaction is its ability to produce pure dialkylmonofluorosilanes by the interaction of equimolar amounts of PhJCBFq with dialkylsilanes (eqn. 4). In a previous

$$
R_2SiH_2 + Ph_3CBF_4 \rightarrow R_2Si \begin{matrix} H \\ F \end{matrix} + Ph_3CH + BF_3 \tag{4}
$$

$$
R = Me, Et
$$

publication, we pointed out the advantage of using organosilicon hydrides as precursors to these kinds of compounds [2]. However, until now the chief disadvantage of directly fluorinating silicon hydrides was the fact that more than one Si-H bond is fluorinated, invariably resulting in mixtures of fluorosihmes that are difficult to separate by conventional methods.

Although we were successful in the stepwise fluorination of dialkylsilanes by this method, we were not successful in partially fluorinating an organosilane that contained three Si-H bonds, viz. EtSiH₃. The rate of fluormating this compound is much sIower than it is with trialkyl or dialkylsilanes and during the longer reaction time required for fluorination, a mixture of ethylfluorosilanes resulted.

An example of utilizmg Ph₃CBF₄ to introduce a silicon-fluorine bond **into a silicon compound that possibly could not survive some of the more common procedures for producing such bonds [3] is found in the mild fluor**ination of HSiMe₂CH₂Fe(CO)₂Cp by this reagent in methylene chloride (eqn. 5).

$$
HSiMe2CH2Fe(CO)2Cp + Ph3CBF4 \rightarrow FSiMe2CH2Fe(CO)2Cp + Ph3CH + BF3
$$
\n(5)

A solvent was used in the reaction owing to the viscous nature of the hydrosilylmethyl complex. This silicon hydride derivative is not particularly stable thermally [4] and would most likely not survive a vigorous halogenation reaction.

Some qualitative experiments were carried out concerning the interaction of Ph₃CBF₄ with the substituted hydrosilanes, MeSiHCl₂ and (HSiMe₂)₂O. In the attempted fluorination of MeSiHCl₂, substitution occurred at the Si-Cl bond rather than at the Si-H bond (eqn. 6). The mixed chloro-fluoro derivative

 $MeSiHCl₂ + Ph₃CBF₄ \rightarrow MeSiHCIF + Ph₃CCl + BF₃$ (6)

in eqn. 6 was not isolated, but under the conditions **of the** reaction it presumably underwent disproportionation to form MeSiHCl₂ and MeSiHF₂. The major volatile product in the reaction of Ph_3CBF_4 with $(HSiMe_2)_2O$ (1/1 mole ratio) was $Me₂SiHF.$ Fluorination of the Si-H bond did occur, as evidenced by the isolation of a **small amount of** (FSiMez)zO, **but** the BF3 generated in the fluorination undoubtedly cleaved the starting silosane producing the Me,SiHF (eqn. 7) [5].

 $3 \text{ (HSiMe}_2\text{)}_2\text{O} + 2 \text{ BF}_3 \rightarrow 6 \text{ Me}_2\text{SiHF} + \text{B}_2\text{O}_3$ (7)

Experimental

Apparatus and techniques

All preparations and purifications of air sensitive compounds were carried out in nitrogen or in vacua by using standard dry-box or vacuum line techniques [6]. Equipment employed has **been described in** previous publications [7]. Un**less** othenvise stated, each reaction was carried out in a 100 ml round-bottomed **flask that could be attached to the vacuum line via a 4** mm stopcock and ground glass joint. NMR spectra were obtained in DCCl₃ (\sim 20% concentrations), using TMS **and/or cyclohexane as internal standards.**

Materials

Dimethylsilane and $E\{tSifH_3\}$ were prepared by a standard LiAlH₄ reduction of the corresponding chloride in di-n-butyl ether [8]. Diethylsilane, Et₃SiH, Me₃SiH, $MeSiHCl₂$ and (HSiMe₂)₂O were obtained from commercial sources and purified on the vacuum line. The purity of each of the above silicon compounds was checked by spectroscopic analyses. Triphenylmethyl tetrafluoroborate was prepared by adding fluoroboric acid dropwise to a solution of Ph_3COH in propionic anhydride [91. The material was recrystallized from methylene chloride and ether and stored in a brown bottle in a desiccator*. Triphenylmethyl fluoride and KBF₄ were obtained from commercial sources and used as received.

The synthesis of HSiMe₂CH₂Fe(CO)₂Cp is described in a separate publica**tion [IO].**

^l**Triphenylmethyl tetrafluoroborate purchased from Catiomc Reagents. Inc. was also found to be** satisfactory for the fluorination reactions described in this work.

 $T₀$

 a All reactions were carried out at room temperature. b In a separate experiment, Me3SiH was condensed into a side arm attached to the reaction vessel so that the Me3SiH vapor could interact with the solid Ph3CBF4. After 30 min, a spectral analysis revealed that about 70% of the Me3SiH had been converted into Me3SiF. Because of the incomplete reaction under these conditions, in all subsequent experiments, the organosilane was condensed directly into the vessel containing the Ph3CBF4. ^c The ¹H NMR spectrum of pure Et2StHF in the Si-H region consists of a doublet of 5 line (1/4/6/4/1) patterns centered at τ 5.37 (J(HCSiH) 2.4 Hz, J(HCSiF) 51.3 Hz). In a separate experiment where the reactants were allowed to react for 30 min at 0° , incomplete conversion was noted by the appearance of a quintet representing the Si-H signal of unreacted Et₂SiH₂ at r 6.35 in the NMR spectrum of the $-134³$ fraction. Since it is very difficult to separate Et_2SH_2 from Et_2SHF on the vacuum line, it is important to note that the sample's NMR spectrum is a very sensitive check to determine if any of the starting organosilanes is present.

 $Et₂ SHF^c$

 2.0

100

Procedure

The fluorination was found to be most successful when the organosilane was condensed from a suitable tube on the vacuum line directly into the vessel containing Ph₃CBF₃. In most cases, a slight excess of the tetrafluoroborate salt was required to bring about quantitative conversions. The reaction vessel was allowed to warm slowly from -196° to room temperature and was then removed from the vacuum line for occasional shaking to expose most of the salt to the silane. One method for monitoring the course of the reaction was through the disappearance of the bright yellow color of the Ph_3CBF_4 and the appearance of the off-white $Ph₃CH$. The necessary reaction time could often be determined just by visual inspection of the solid in the reaction flask.

In most of the successful fluorinations, the products could be quantitatively separated by allowing them to distill through a trap maintained at -134° into a trap maintained at -196° . The fluorosilane condenses in the -134° trap and the BF₃, identified by its infrared spectrum [11], condenses in the -196° trap. The solid Ph₃CH, identified by comparing both its infrared and proton NMR spectra with spectra obtained for an authentic sample of $Ph₃CH$, remains in the reaction flask.

The identity and purity of the fluorosilane obtained was confirmed by one or more of the following methods: infrared spectroscopy, 'H NMR spectroscopy, and gas phase molecular weight measurements. Infrared spectra obtained were compared either with spectra in the literature, $Me₃SiF [12]$, Me₂SiF₂ [13], or authentic samples of material available in our laboratory.

Details for five of the fluorination reactions carried out in the above manner are summarized in Table 1.

TABLE 1

 $E12SiH2$

ο o

 2.4

Other Reactions

 Ph_3CBF_4 and $H\text{SiMe}_2CH_2Fe(CO)_2Cp$. A solution of $H\text{SiMe}_2CH_2Fe(CO)_2Cp$ (6.8 mmol) in 25 ml of deoxygenated CH_2Cl_2 was cooled to 0° in a 100 ml round-bottomed flask under nitrogen. A CH_2Cl_2 solution (15 ml) of Ph_3CBF_4 (6.8 mmol) was added dropwise from a pressure equalizing addition funnel over a period of 30 min. During the addition, the reaction mixture was maintained at 0° and a gas presumed to be BF_3 was evolved. The reaction was allowed to continue for an additional hour while most of the $CH₂Cl₂$ was removed by a stream of nitrogen gas. The residue was eluted on an acid washed alumina column **with 5/95** ether/pentane and **the large yellow band which appeared was** collected. After removal of the solvent, both the NMR and infrared spectra indicated that the sample was a mixture of $FSiMe₂CH₂Fe(CO)₂Cp$ and $Ph₃CH$ which was not appreciably separated by the chromatographic technique. Since it was not easy to separate the fluoro derivative from Ph_3CH , a yield was not determined. However, the reaction appeared to be nearly quantitative based on the fact that $FSiMe,CH,Fe(CO),CD$ and $Ph₃CH$ were the only major components observed in the product mixture.

A small sample of the compound was purified by first removing a large amount of the Ph₃CH by crystallizing it from pentane at -78° . Pentane was removed and the remaining product was distilled on the vacuum line, R.T. \sim -196°. In a very slow distillation, pure FSiMe₂CH₂Fe(CO)₂Cp collected in the -196° trap. The purity of the matenal was confirmed by its analysis* (found: C, 45.2; H, 4.9. $C_{10}H_{13}$ FFeO₂Si calcd.: C, 44.8; H, 4.9%), mass measurement (M^{\dagger}) found: 268.0018, calcd.: 268.0018), and proton NMR spectrum $(\tau 9.76$ (d) CH₃, $J(H_3CS)$ F) 7.0 Hz; $\tau 10.46$ (d) CH₂, $J(CH_2S)$ F) 8.7 Hz; $\tau 5.21$ Cp).

 $Ph₃CBF₄$ and MeSiHCl₂, Ph₃CBF₄ (2.7 mmol) and MeSiHCl₂ (2.3 mmol) were allowed to react for 3 h at room temperature and fractionated as previously described in the general procedure. The -134° fraction appeared to be **a mixture of MeSiHCI,,** MeSiHF, and a thud component, possibly MeSiHCIF. The -196° fraction was BF₁. The contents of the -134° fraction were returned to the reaction vessel and allowed to react for an additional 16 h A second fractionation yielded a mixture of MeSiHCl₂ and MeSiHF₂ in the -134° trap. Since very little BF, was generated during this additional 16 h reaction, it appears that MeSiHFCI was produced initially and then underwent disproportion **(eqn.** 8). Exammation of the solid residue remaining in the reaction vessel

 2 MeSiHClF \rightarrow MeSiHCl₂ + MeSiHF₂ (8)

showed that it was Ph_3CC by comparing both its infrared and proton NMR spectra with corresponding spectra of an authentic sample of Ph_3CCl . No indication of the formation of Ph_3CH was observed in this experiment, and all of the Ph_3CBF_4 had apparently reacted. The stoichiometry for the reaction was not determined owing to the difficulty in fractionating the reaction products. However, these preliminary results do indicate that only the Si-CI bond of MeSiHCl₂ was attacked by Ph₃CBF₄, leaving the Si-H bond unchanged.

^{*} Analysis performed by Schwarzkopf Microanalytical Laboratory, Woodside, N.Y.

 $Ph₃CBF₄$ and $(HSiMe₂)₂O$. Equimolar amounts (2.0 mmol) of each reactant **were allowed to react for 15 min at room temperature. The products were distilled at** $\sim -96^{\circ} \sim -120^{\circ} \sim -196^{\circ}$ **. The** -196° **fraction was BF₃ (1.2)** $mmol$, the -120° fraction was MeSiHF (2.2 mmol) and the -96° fraction was **a mixture of components that appeared to be unstable during its manipulation** in the vacuum line. The sample was allowed to distill through $a - 23^{\circ}$ trap, and in a separate fractionation allowed to condense in $a - 73^\circ$ trap. The small sample obtained in the -73° trap was (FSiMe₂), O identified by its molecular weight **(found: 113.6, calcd.: 114.1) and infrared spectrum [14]. The total quantity was not determined since the fluorinated silosane was not easily fractionated from the other unidentified reaction products. The study of this reaction was not pursued in any greater detail because the method does not have utility as a means of selectively fluorinating the Si-H bond of the silovane without cleaving the Si-O-Si linkage.**

 $KBF₄$ and $Me₃SH$. Finely ground anhydrous $KBF₄$ (2.6 mmol) was **combined with Me,SiH (2.0 mmol) and allowed to react at room temperature for 3 h. The volatile fraction was removed and shown to be pure Me,SiH (2.0** mmol) with no indication of any BF₃ in the sample.

 Ph_3CF and Me_2SiH_2 . Ph_3CF (2.1 mmol) and Me₂SiH₂ (2.1 mmol) were **combined and allowed to react at room temperature for 1 h. The volatile material** was removed and identified as being unreacted $(CH_3)_2SH_2$ (2.1 mmol). Identical results were obtained when approximately 25 ml of CH₂Cl₂ was added as **a solvent and the reaction was repeated.**

Ph3CBF4 and EtSiH3. **Equimolar amounts of each reactant (2.0 mmol) were combined and allowed to react for 30 min at room temperature. An infrared spectrum of the mixture revealed that only a trace of BF3 had formed and that very little reaction had taken place. A similar conclusion was reached after the reaction continued for an additional 2.5 h. The reaction was allowed to continue for an additional 21 h, at which time the products were distilled as** described in the general procedure. The material in the -134° trap could not **be separated into its components, but appeared to be a mixture of EtSiHJ,** EtSIH₂F, and EtSIHF₂ from its infrared spectrum. The -196° trap contained **BF, (1.9 mmol).**

Acknowledgement

We gratefully acknowledge the support of this research by the National Science Foundation through Grant GP-12833. Acknowledgement is also made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

References

- **1 J.Y. Corey and R. West. J. Amer. Chem Sot.. 85 (1963) 2430.**
- 2 M.A. Finch, L.H. Marcus, C. Smirnoff. C.H. Van Dyke and N. Viswanathan, Syn. Inorg. Metal. Org. **C&m.. L(1971) 103.**
- **3 C.H. Van Dyke. m A.G. MacDimmd. (Ed.). OrganometaUc Compounds of the Group IV Elements.** Vol. 2, Part I, Marcel Dekker, New York, 1972.
- 4 K.H. Pannell. J. Organometal. Chem., 21 (1970) P17.
- 5 H.J. Emeleus and M. Onyszchuk, J. Chem. Soc., (1958) 604.
- 6 D.F. Shriver, The Manipulation of Air-Sensitive Compounds, McGraw Hill, New York, N.Y. 1969.
- 7 E.W. Kifer and C.H. Van Dyke, Inorg. Chem., 11 (1972) 404, C.H. Van Dyke, E.W. Kifer and G.A. Gibbon, Inorg. Chem., 11 (1972) 408.
- 8 A.E. Finholt, A.C. Bond, Jr., K.E. Wilzbach and H.I. Schlesinger, J. Amer. Chem. Soc., 69 (1947) 2692.
- 9 H.J. Dauben, Jr., L.R. Honnen and K.M. Harmon, J. Org. Chem., 25 (1960) 1442.
- 10 J.E. Bulkowski, Doctoral Dissertation, Carnegie-Mellon Univ., 1974.
- 11 J. Vanderryn, J. Chem. Phys., 30 (1959) 331.
- 12 H. Kriegsmann, Z. Anorg. Allg. Chem., 294 (1958) 113.
- 13 H. Spangenberg and M. Pfeiffer, Z. Phys. Chem., 232 (1966) 343.
- 14 G. Englehardt and H. Kriegsmann, Z. Anorg. Allg. Chem., 328 (1964) 194.